Stiffness and Flexibility Methods for Structural Analysis

Eric M. Hernandez, Ph.D.

September 15, 2015

Abstract

This document presents the classical methods of flexibility and stiffness for the analysis of statically indeterminate structures

1 Preliminary Definitions

Statically Determinate Structure: A structure such that when subjected to any set of external forces, moments and(or) pressures; its reactions and internal stress fields can be computed using only equations of equilibrium.

Degree of Freedom: The number of scalars necessary to describe the deformed shape of a structure.

Degree of Indeterminancy: Set of internal forces/reactions which if known, would make the structure statically determinate. This set is not unique, but their number is.

2 Flexibility Method

Definition: The flexibility coefficient i,j is the deformation/rotation at point i due to a unit load/moment at point j. The flexibility coefficient i,j is denoted as $f_{i,j}$.

The flexibility method for the analysis of statically indeterminate structures operates using the principles of superposition and proportionality. In the flexibility method, a statically indeterminate structure with degree of indeterminancy equal to n is analyzed as a statically determinate "released" structure with n releases (selected by the analyst). These releases correspond to external boundary conditions (support reactions) or continuity constraints, such as a hinge in a point of structural continuity. The forces/moments corresponding to each release are treated as unknown and are found by formulating compatibility equations in order to restore continuity or a specified boundary condition at the point of release. The basic equation of the flexibility method is

$$\mathbf{F}\mathbf{f} + \mathbf{x}_o = \mathbf{x}_p \tag{1}$$

where **F** is the flexibility matrix of the released structure, **x** is the hyperstatic force vector (forces/moments corresponding to each release), \mathbf{x}_o is the deformation vector at the release points induced by the loads on the released structure, and \mathbf{x}_p is the permanent deformation vector of the statically indeterminate structure at the released points.

The solution of the hyperstatic forces is given by

$$\mathbf{f} = \mathbf{F}^{-1} \left(\mathbf{x}_p - \mathbf{x}_o \right) \tag{2}$$

2.1 Computing Flexibility Matrices in 3-D Frame Structures

The flexibility coefficient i, j for a 3D frame structure is given by

$$f_{i,j} = \int_{L} \frac{n_{j}\bar{n}_{i}}{AE} dx + \int_{L} \frac{v_{2,j}\bar{v}_{2,i}}{Ga_{r}} dx + \int_{L} \frac{v_{3,j}\bar{v}_{3,i}}{Ga_{r}} dx + \int_{L} \frac{t_{j}\bar{t}_{i}}{GJ} dx + \int_{L} \frac{m_{2,j}\bar{m}_{2,i}}{EI_{2}} dx + \int_{L} \frac{m_{3,j}\bar{m}_{3,i}}{EI_{3}} dx$$
(3)

where lower case variables have been used to indicate that the internal forces are produced by unit loads and the subscripts i or j indicate whether the internal forces are generated by unit loads at i or j respectively. As can be seen interchanging the indeces i and j does not change the value of the flexibility coefficient, therefore we can conclude that $f_{i,j} = f_{j,i}$ and thus the flexibility matrix is a symmetric matrix.

3 Stiffness Method

Definition: The stiffness coefficient i, j is the force/moment at degree of freedom i necessary to generate a unit displacement/rotation at degree of freedom j while all other degrees of freedom are restrained to zero displacement/rotation.

The basic equation for the stiffness method is

$$\mathbf{K}\mathbf{x} = \mathbf{f}_e \tag{4}$$

where **K** is the stiffness matrix of the structure, **x** is the displacement at all degrees of freedom and \mathbf{f}_e is the vector of external forces/moments applied at the degrees of freedom. The solution for the displacement at all degrees of freedom is given by

$$\mathbf{x} = \mathbf{K}^{-1} \mathbf{f}_e \tag{5}$$

3.1 Computing Stiffness Matrices

The stiffness coefficient i,j of a structure can be computed using the virtual work theorem by evaluating the following integral throughout the volume of the structure

$$k_{i,j} = \int_{V} \sigma_i^T \bar{\epsilon}_j dV = \int_{V} \epsilon_i^T \mathbf{E} \bar{\epsilon}_j dV \tag{6}$$

where $\bar{\epsilon}_j$ is the virtual strain field corresponding to the unit virtual displacement at DOF j, ϵ_i is the strain field corresponding to a unit displacement at DOF i

Figure 1: Example of application of virtual work theorem to compute stiffness coefficient in prismatic member

and **E** is the elasticity matrix.

To illustrate consider the prismatic frame element shown in Fig.1. Suppose we are interested in computing the stiffness coefficient $k_{5,5}$. In this case one has

$$\epsilon = \bar{\epsilon} = \frac{6}{L^2} - \frac{12}{L^3}x\tag{7}$$

which results in

$$k_{5,5} = \int_0^L \left(\frac{6}{L^2} - \frac{12}{L^3}x\right)^2 EIdx = \frac{12EI}{L^3}$$
(8)

Other coefficients can be computed similarly.

4 Relationship between Flexibility and Stiffness

In a linear elastic structure, the relationship between the forces and displacement at various points can be synthesized by the following linear matrix equation

$$\mathbf{x} = \mathbf{F}\mathbf{f} \tag{9}$$

where \mathbf{x} is the displacement vector, \mathbf{f} is the force vector and \mathbf{F} is the flexibility matrix whose components are defined by eq.3. Conversely, the relationship between the forces and displacement can also be synthesized as follows

$$\mathbf{f} = \mathbf{K}\mathbf{x} \tag{10}$$

where \mathbf{x} is the displacement vector, \mathbf{f} is the force vector and \mathbf{K} is the stiffness matrix whose components are defined by eq.10. Upon comparison of the previous two equations it is evident that given a finite set of DOF, the stiffness matrix \mathbf{K} and the flexibility matrix \mathbf{F} are related as follows

$$\mathbf{F} = \mathbf{K}^{-1} \tag{11}$$