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Abstract

This document presents the classical methods of flexibility and stiffness
for the analysis of statically indeterminate structures

1 Preliminary Definitions

Statically Determinate Structure: A structure such that when subjected to
any set of external forces, moments and(or) pressures; its reactions and internal
stress fields can be computed using only equations of equilibrium.

Degree of Freedom: The number of scalars necessary to describe the de-
formed shape of a structure.

Degree of Indeterminancy : Set of internal forces/reactions which if known,
would make the structure statically determinate. This set is not unique, but
their number is.

2 Flexibility Method

Definition:The flexibility coefficient i,j is the deformation/rotation at point
i due to a unit load/moment at point j. The flexibility coefficient i,j is denoted
as fi,j .

The flexibility method for the analysis of statically indeterminate structures
operates using the principles of superposition and proportionality. In the flex-
ibility method, a statically indeterminate structure with degree of indetermi-
nancy equal to n is analyzed as a statically determinate “released” structure
with n releases (selected by the analyst). These releases correspond to exter-
nal boundary conditions (support reactions) or continuity constraints, such as a
hinge in a point of structural continuity. The forces/moments corresponding to
each release are treated as unknown and are found by formulating compatibility
equations in order to restore continuity or a specified boundary condition at the
point of release. The basic equation of the flexibility method is

Ff + xo = xp (1)

where F is the flexibility matrix of the released structure, x is the hyper-
static force vector ( forces/moments corresponding to each release), xo is the
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deformation vector at the release points induced by the loads on the released
structure, and xp is the permanent deformation vector of the statically indeter-
minate structure at the released points.

The solution of the hyperstatic forces is given by

f = F−1 (xp − xo) (2)

2.1 Computing Flexibility Matrices in 3-D Frame Struc-
tures

The flexibility coefficient i,j for a 3D frame structure is given by

fi,j =

∫
L

nj n̄i
AE

dx+

∫
L

v2,j v̄2,i
Gar

dx+

∫
L

v3,j v̄3,i
Gar

dx+

∫
L

tj t̄i
GJ

dx

+

∫
L

m2,jm̄2,i

EI2
dx+

∫
L

m3,jm̄3,i

EI3
dx (3)

where lower case variables have been used to indicate that the internal forces
are produced by unit loads and the subscripts i or j indicate whether the in-
ternal forces are generated by unit loads at i or j respectively. As can be seen
interchanging the indeces i and j does not change the value of the flexibility
coefficient, therefore we can conclude that fi,j = fj,i and thus the flexibility
matrix is a symmetric matrix.

3 Stiffness Method

Definition: The stiffness coefficient i,j is the force/moment at degree of freedom
i necessary to generate a unit displacement/rotation at degree of freedom j while
all other degrees of freedom are restrained to zero displacement/rotation.

The basic equation for the stiffness method is

Kx = fe (4)

where K is the stiffness matrix of the structure, x is the displacement at
all degrees of freedom and fe is the vector of external forces/moments applied
at the degrees of freedom. The solution for the displacement at all degrees of
freedom is given by

x = K−1fe (5)

3.1 Computing Stiffness Matrices

The stiffness coefficient i,j of a structure can be computed using the virtual
work theorem by evaluating the following integral throughout the volume of the
structure

ki,j =

∫
V

σT
i ε̄jdV =

∫
V

εTi Eε̄jdV (6)

where ε̄j is the virtual strain field corresponding to the unit virtual displacement
at DOF j, εi is the strain field corresponding to a unit displacement at DOF i
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Figure 1: Example of application of virtual work theorem to compute stiffness
coefficient in prismatic member

and E is the elasticity matrix.
To illustrate consider the prismatic frame element shown in Fig.1. Suppose we
are interested in computing the stiffness coefficient k5,5. In this case one has

ε = ε̄ =
6

L2
− 12

L3
x (7)

which results in

k5,5 =

∫ L

0

(
6

L2
− 12

L3
x

)2

EIdx =
12EI

L3
(8)

Other coefficients can be computed similarly.

4 Relationship between Flexibility and Stiffness

In a linear elastic structure, the relationship between the forces and displacement
at various points can be synthesized by the following linear matrix equation

x = Ff (9)

where x is the displacement vector, f is the force vector and F is the flexibility
matrix whose components are defined by eq.3. Conversely, the relationship
between the forces and displacement can also be synthesized as follows

f = Kx (10)

3



where x is the displacement vector, f is the force vector and K is the stiffness
matrix whose components are defined by eq.10. Upon comparison of the pre-
vious two equations it is evident that given a finite set of DOF, the stiffness
matrix K and the flexibility matrix F are related as follows

F = K−1 (11)

4


