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Abstract

This document is intended to provide a brief and concise review of some
essential aspects of matrix analysis, specially as it concerns its application
for structural analysis.

1 Vectors and Vector Spaces - Intuitive Con-
cepts

A vector is a mathematical representation of a point in n-dimensional space,
where n is a positive integer. We shall use bold lower case letters such as
a,q, z to denote vectors. Lower case cursive letters such as a, q, z will be used
to represent scalars. We shall denote the ith component of a vector v as vi.
Vectors are typically written as a column of numbers. As an example consider
the vector x representing a point in 3-dimensional space

x =

 1
−3
2

 x2 = −3 (1)

However a vector need not be exclusively used to represent points in a physi-
cal space. We can also use vectors to represent “points” in more general and
abstract spaces. For example consider generating a vector to represent a par-
ticular color. By using the additive primary colors RED-BLUE-GREEN it is
possible to obtain many other colors. Therefore one can think of the primary
colors as three orthogonal axes and any particular color as a “point” in a three-
dimensional space. By defining the three primary colors as

red =

 1
0
0

 blue =

 0
1
0

 green =

 0
0
1

 (2)

we obtain for example that

yellow =

 1
0
1

 cyan =

 0
1
1

 magenta =

 1
1
0

 (3)
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Purely mathematical examples of vector spaces can also be constructed. Con-
sider all possible monic quartic polynomials of the form

a0 + a1x+ a2x
2 + a3x

3 + x4 = 0 (4)

It is possible to define the vector space of all quartic polynomials as a 4-
dimensional space where each coefficient is an independent “axis”. So that
the vector

v =


−1
2
3
5

 (5)

represents the polynomial

−1 + 2x+ 3x2 + 5x3 + x4 = 0 (6)

which itself is a “point” is a four-dimensional space. Another way to define a
vector space of polynomials is by their roots, In this case you would have n roots
for a polynomial of degree n. The roots taken as a vector represent a point in
n dimensional space.

Vector spaces with a more structural flavor can also be constructed. Consider
the three-hinge frame shown below

Py 

Px 

H 

B B 

(a) 

(c) 

(e) 

This structure has four independent reaction forces; two at point (a), Ax and
Ay, and two at point (e), Ex and Ey. We can think of these reactions as a point
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in a four dimensional space.

r =


Ax

Ay

Ex

Ey

 (7)

2 Matrices

In its simplest form a matrix is a rectangular arrangement of numbers, however
a matrix can also be a rectangular arrangement of functions, and even other
matrices! We will represent matrices by a capital bold letter of the English
alphabet. We shall denote the component in the ith row and the jth column of
a matrix A as ai,j , such that if

A =

 0 4 −1
9 6 −3
1 2 5

 a3,1 = 1 (8)

A matrix A defined over the field of real numbers with n rows and m columns
will be denoted as A ∈ Rn×m. Matrices constitute an indispensable tool in
modern engineering, applied science and mathematics. Among a multitude of
potential applications, matrices are a convenient and compact way to represent,
analyze and solve linear set of equations, such as the ones typically found in the
analysis of equilibrium and deformation of linear elastic structures. Consider as
a simple example the equilibrium equations of the frame shown previously

ΣFx = Ax + Ex = −Px (9)

ΣFy = Ay + Ey = Py (10)

ΣM
c,left = −AyB +AxH = 0 (11)

ΣM
c,right = EyB + ExH = PyB (12)

which can be conveniently and compactly expressed in matrix form as
1 0 1 0
0 1 0 1
H −B 0 0
0 0 H B



Ax

Ay

Ex

Ey

 =


−Px

Py

0
PyB

 (13)

The solution to the previous equation can be easily found using well-known ma-
trix analysis methods. Matrices can be studied from the perspective of linear
operator theory, i.e., a matrix A operates on a vector v and it transforms it to
a vector w. This is the most general and complete approach to matrix analysis.
From this perspective, matrix analysis is mainly concerned with: (i)providing a
qualitative understanding of matrices as operators on linear vector spaces and
(ii)developing numerical methods to quantify their properties and operations.
We will make extensive use of MATLAB to perform the matrix computations
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required in Advanced Structural Analysis. To this end we provide along with the
theory, references to essential MATLAB functions for numerical matrix analysis.

In essence, our objective in this course will be to represent the behavior of
a linear elastic structure by a matrix and forces and deformations as vectors.
Thus, by understanding how matrices operate on vectors, we shall understand
how structures respond to the action of forces and deformations.

3 Matrix Analysis using MATLAB

In the MATLAB environment a vector such as

x =

 1
7
−3

 (14)

can be specified by typing the following commands

v=zeros(3,1) (15)

v(1,1)=1 (16)

v(2,1)=7 (17)

v(1,1)=-3 (18)

Alternatively, it can also be specified as

v=[1;7;-3] (19)

In the case of the matrix in eq.8, it can be specified as

A=[0 4 -1;9 6 -3;1 2 5] (20)

and the command to extract, say the element in the third row and first column
is

A(3,1) = 1 (21)

4 Vectors and Vector Spaces - Formal Defini-
tions

In this section we provide more formal mathematical definitions of vector spaces
and its application to matrix analysis.

4.1 Vector Spaces

Vector Space: A vector space is a set V of objects (called vectors in a general
sense, but not necessarily referring only to physical quantities such as position,
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velocity, force, etc.) closed under addition, which is associative, commutative
and possesses an identity element and additive inverses in the set. The set is
also closed under scalar multiplication. Vector spaces can be finite dimensional
or infinite dimensional. In structural applications we are interested mostly in
finite dimensional vector spaces defined over the field of real numbers.
Vector Subspace: A subspace U of a vector space V is a subset of V and it is a
vector space itself.
Linear dependence and independence: A set of vectors x1,x2, ...,xn in a vector
space is said to be linearly dependent if there are scalars a1, a2, ..., an such that

a1x1 + a2x2 + ...+ anxn = 0 (22)

A subset of V that is not linearly dependent is said to be linearly independent.
Basis: A subset S of a vector space V is said to span V if every element

of V may be represented as a linear combination of elements of S. A linearly
independent set which spans a vector space V is called a basis for V and denoted
as BV or simply B if the vector space is implicit. This means every element of
V can be represented in terms of the basis vectors in one and only one way.
However, a basis is not unique. A member of an nth dimensional basis B is
denoted as Bi for i = 1, 2, ..., n. Typically when representing basis in matrix
form, each column of the matrix represents one basis vector.

Dimension: For finite dimensional vector spaces, the number of elements in
the basis of V is its dimension and it is denoted as dimV . All basis of V have
the same dimension.

4.1.1 Example

Consider the position of a object in three dimensional space (denoted as R3).
This is a vector space of dimension 3 and can be spanned by the following basis

B1 =

 1 1 3
2 3 4
1 1 3

 (23)

but also by the following

B2 =

 1 0 0
0 3 4
0 0 3

 (24)

and clearly by the most usual

B2 =

 1 0 0
0 1 0
0 0 1

 (25)
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5 Basic Operations

This section describes the basic operations that will be typically performed
in our course using matrices and vectors. Note that in the context of this
exposition, a vector is simply a spacial case of a matrix.

5.1 Addition

The elements of the matrix C = A+B are defined as

ci,j = ai,j + bi,j (26)

This clearly indicates that only matrices of the same size can be added. In
MATLAB, the addition of matrices is simply implemented by using the com-
mand +, and thus after specifying A and B, the matrix C can be found by typing

C=A+B (27)

Vector addition is simply a special case of matrix addition, where only the
first subindex remains (since vectors are single column matrices). Therefore the
components of z = x+ y are given by

zi = xi + yi (28)

5.2 Multiplication

The components of the matrix product Z = QR are defined as

zi,j =
∑
k

qi,krk,j (29)

Thus two matrices Q ∈ Rn×m and R ∈ Rp×r can only be multiplied in the
standard sense if m = p. The resulting matrix Z will be of dimension n× r.

Four special cases result from this general formulation:
-multiplication of two vectors - inner product : The inner product of two vectors
results in a scalar and it is defined as

x · y = xTy = yTx =
∑
i

xiyi (30)

Two vectors are said to be orthogonal if their inner product is zero.
-multiplication of two vectors - outer product : The outer product of two

vectors results in a matrix M and it is defined as

mj,k = xyT = xjyk (31)
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- pre-multiplication of a matrix times a vector : Pre-multiplying a matrix A
times a vector v results in a vector y which can be defined as

y = Av (32)

where

yi =
∑
j

ai,jvj (33)

or put in words, it is the linear combination of the columns of A weighted by
the components of the vector v.

- pre-multiplication of a matrix times a scalar : Pre-multiplying a matrix A
times a scalar α results in a matrix B which can be defined as

B = Aα (34)

where

bi,j = ai,jα (35)

In MATLAB, multiplication can be specified by using the command * between
the elements (vectors or matrices) being multiplied, i.e. A ∗ B.

6 Coordinates of a vector

A basis B for a vector space can be represented as a matrix, where every column
represents a member of the basis. Therefore any vector v of the vector space V
of dimension n can be represented as a linear combination of the basis vectors
bi such that

v =
∑
i

bixi = [b1 b2 · · · bn ]


x1

x2
...
xn

 = Bx (36)

where xi is the coordinate of the vector v along the direction bi. A standard
basis BV

S of a vector space V is one in which the coordinates of a vector are the
vector itself, thus for an n dimensional space, a standard basis is represented by
the identity matrix

BS = I =


1 0 · · · 0
0 1 · · · 0
...
0 0 · · · 1

 (37)
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7 Coordinate Transformation

As discussed previously, a basis B for a vector space V is not unique and one
could transition from one basis to another. Let’s denote A as the matrix of
basis vectors for the basis B1 and B as the matrix of basis vectors for basis B2.
Every column of A can be expressed in the basis B2 as

ai = Bti (38)

which can be written for all vector as

A = BT (39)

Therefore a vector v expressed in basis B1 as

v = Ax (40)

can be expressed in the basis B2 by substituting A = BT to get

v = BTx = By (41)

where y = Tx are the coordinates of x in the basis B2 with basis vectors as
columns of B.

In the special case of a rotation θ the 2-D Cartesian frame of reference, the
coordinate transformation matrix T is given by

T =

[
cos θ sin θ
− sin θ cos θ

]
(42)

v 

q 

The figure above is the graphical interpretation of the 2-D coordinate transfor-
mation matrix in eq.42.
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8 Matrix Operator Coordinate Transformation

A matrix Q operating on a vector z expressed in basis B1 results in a vector w

w = Qz (43)

transforming both vectors in eq.43 to a different basis B2 and substituting gives

z = Tx (44)

w = Ty (45)

Ty = QTx (46)

y = T−1QTx (47)

which means that the matrix operator Q originally given in basis B1 can be
expressed in B2 as

T−1QT (48)

This relationship will become extremely useful when expressing equilibrium and
displacement equations in different coordinate systems.

9 Transpose of a Matrix

The transpose of a matrix A is denoted as B = AT and it is defined as

bi,j = aj,i (49)

A matrix A is called symmetric if

ai,j = aj,i (50)

To compute the transpose of a matrix A in MATLAB, the command is A’

10 Rank of a Matrix

The rank of a matrix is defined as the maximum number of linearly independent
column (or row) vectors. A matrix is called full column rank if its rank is equal
to the number of columns. Similarly it is called full row rank, if its rank is equal
to the number of rows. If a matrix is square and it is full column (or row) rank
we simply refer to it as full rank. It can be shown that for any matrix the row
rank is equal to the column rank. In MATLAB the command to compute the
rank of a matrix A is rank(A).
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11 Inverse of a Matrix

The inverse matrix B of a matrix A is defined as

AB = BA = I (51)

and it is denoted as B = A−1. The inverse of a matrix, in the strict sense, only
exists for square matrices with full rank. In MATLAB the inverse of matrix A
is given by the command inv(A). A linear set of equations given by

y = Ax (52)

multiplying both sides by the inverse of A, namely A−1

A−1y = A−1Ax (53)

resulting in

x = A−1y (54)

This provides the solution for x.

12 Matrix Partitions

A matrix can be partitioned in multiple ways, one useful partition in structural
analysis is to partition a matrix into four blocks

A =

[
A11 A12

A21 A22

]
(55)

where Aij is a sub-matrix. As an example consider

A =


1 2 6 7
−3 4 9 1
1 3 3 0
0 2 −8 10

 (56)

one possible partition is

A11 =

 1 2 6
−3 4 9
1 3 3

 (57)

A12 =

 7
1
0

 (58)

A21 = [ 0 2 −8 ] (59)

A22 = [ 10 ] (60)

10



In MATLAB these partitions can be obtained with the following commands

A(1:3,1:3) (61)

A(1:3,4) (62)

A(4,1:3) (63)

A(4,4) (64)

It can be shown that the partitions of A−1 can be expressed as a function of
the partitions of A as

A−1 =

[
(A11 −A12A

−1
22 A21)

−1 A−1
11 A12(A21A

−1
11 A12 −A22)

−1

(A21A
−1
11 A12 −A22)

−1A21A
−1
11 (A22 −A21A

−1
11 A12)

−1

]
(65)

Any square submatrix of another matrix is called a principal submatrix.

13 Null Space

The null space of a matrix A is defined as the subspace containing all the vectors
v which satisfy

Av = 0 (66)

In MATLAB the null space of a matrix A is computed by using the command
null(A). It can be shown that full column rank matrices do not have a null
space. The converse is also true, if a matrix has a null space then it can not be
full column rank.

14 Determinant

The determinant of a matrix A ∈ Rn,n is a scalar denoted as det(A) and defined
by

det(A) =
∑
σ

sgn(σ)

n∏
i=1

aiσ(i) (67)

where the sum runs over all n! permutations σ of the n element sequence
(1, 2, ..., n). The sgn(.) function of a permutation is either +1 or −1 depending
if the permutation is even or odd. A permutation is even if the minimum num-
ber of interchanges necessary to restore the permutation to its natural state of
(1, 2, ..., n) is even, and it is odd otherwise. For example, for n = 3, the per-
mutation (1, 3, 2) is odd, while the permutation (3, 1, 2) is even. Can you find
another criteria which easily defines if a permutation is even or odd?

The determinant of a matrix is an important quantity for many reasons, one
important one is that the determinant of a rank deficient matrix is equal to
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zero. This will become very useful when defining the eigenvalues of a matrix.

In MATLAB the determinant of a matrix A is computed by using the com-
mand, det(A).

15 Positive Definite Matrices

A matrix A is positive definite iff

xTAx > 0 ∀x (68)

Positive definite matrices are of great importance for physics and engineering
applications since they represent stable systems with quadratic potential energy
energy functions.

A matrix A is positive semi-definite iff

xTAx ≥ 0 ∀x (69)

It can be shown (Rayleigh theorem) that the ratio

r =
xTAx

xTx
(70)

is maximized whenever x = ϕ1 and minimized whenever x = ϕn.

Fundamental Theorem on Positive Semi-Definite Matrices
Let Abe a square symmetric matrix, then the following properties are equiva-
lent:

� A is positive semi-definite

� A+ ϵI is positive definite ∀ϵ > 0

� All the eigenvalues of all the principal submatrices of A are non-negative

� All eigenvalues of A are non-negative

Furthermore

� If A is positive definite it is invertible

� If A is positive definite its inverse A−1 is also positive definite

16 Norms

In its simplest form a norm is a measure of the length of a vector. The three
most popular and useful norms for vectors are:
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16.1 Euclidean Norm

The Euclidean norm or simply the 2-norm is an extension of Pythagoras theorem
to n dimensions. The Euclidean norm of a vector x is represented as ||x||2 and
is defined as:

||x||2 =

(
n∑

k=1

x2
k

)1/2

(71)

16.2 Manhattan Norm

The Manhattan norm or simply the 1-norm is represented as ||x||1 and is defined
as:

||x||1 =

n∑
k=1

|xk| (72)

16.3 Infinity Norm

The infinity norm is represented as ||x||∞ and is defined as:

||x||∞ = max (|xk|) (73)

In the context of MATLAB the command norm(x,n) provides the n-norm
of a vector.

17 Eigenvalues and Eigenvectors

When a matrix A acts upon a vector x by pre-multiplication, the result is
another vector y, whose direction and magnitude are in general different from
those of x, however there are some vectors, which we shall refer to as eigenvectors
ϕ, which possess the special property that

Aϕ = λϕ (74)

where λ is a scalar, which we define as the eigenvalue corresponding to the eigen-
vector ϕ. This indicates that eigenvectors are such that whenever acted upon
by the matrix, they simply “stretch” or “contract” depending on the magnitude
of the corresponding eigenvalue.

All n × n full rank symmetric matrices possess n linearly independent eigen-
vectors and n different corresponding eigenvalues. Furthermore, if the matrix is
real and symmetric the eigenvalues will all be real or come in complex conjugate
pairs (Can you prove that?).
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Rearranging eq.74 we find that

(A− Iλi)ϕi = 0 ∀i (75)

which shows that the eigenvector ϕi corresponding to eigenvalue λi is in the null
space of the matrix (A− Iλi). This leads to the fact that

det (A− Iλi) = 0 ∀i (76)

From which all eigenvalues of A can be computed. The polynomial resulting
from eq.76 is known as the characteristic polynomial. It can be shown (Caley-
Hamilton theorem) that every matrix satisfies its own characteristic polynomial.
In MATLAB the coefficients of the characteristic polynomial of a matrix A can
be obtained by using the command poly(A). In MATLAB, the eigenvalues and
eigenvectors of a matrix An×n are computed with the following command

[v,d]=eig(A) (77)

where v is the matrix of eigenvectors arranged in columns and d is a diagonal
matrix where every diagonal entry is an eigenvalue corresponding to the eigen-
vector in column coincident with the location of the diagonal entry of d such
that

A*v(:,j)=d(j,j)*v(:,j) (78)

for any scalar j between 1 and n. Finally, eigenvalues are assigned numbers as
a function of their magnitude, that is, for an n× n matrix λ1 is the eigenvalue
with the largest magnitude and λn the eigenvalue with the smallest magnitude.
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