CE-370 Uncertainty and Risk in Engineering Systems

Instructor: Eric M. Hernandez, PhD

SUMMARY OF LECTURE 6 - FUNCTIONS OF A RANDOM VARIABLE

In many situations one is interested in determining the cumulative distribution function (CDF) and probability density function (PDF) of a certain function of a random variable with known CDF and PDF. That is, given $F_{X}(x), f_{X}(x)$ and the function

$$
\begin{equation*}
Y=\phi(X) \tag{1}
\end{equation*}
$$

we are interested in

$$
\begin{equation*}
F_{Y}(y)=P[Y \leq y] \tag{2}
\end{equation*}
$$

and its derrivative

$$
\begin{equation*}
f_{Y}(y)=\frac{d}{d y} F_{Y}(y) \tag{3}
\end{equation*}
$$

To begin, consider the figure below depicting an arbitrary function $y=\phi(x)$

As can be seen, the event $Y \leq y$ is equivalent to the event $\bigcup_{i} \psi_{i}^{(-)}(y) \leq x \leq \psi_{i}^{(+)}(y)$ where $\psi(\cdot)=\phi^{-1}(\cdot)$. Therefore

$$
\begin{equation*}
F_{Y}(y)=P[Y \leq y] \Leftrightarrow \sum_{i} P\left[\psi_{i}^{(-)} \leq x \leq \psi_{i}^{(+)}(y)\right]=\sum_{i}\left(F_{X}\left(\psi_{i}^{(+)}(y)\right)-F_{X}\left(\psi_{i}^{(-)}(y)\right)\right) \tag{4}
\end{equation*}
$$

Consequently, the probability density function (PDF) of Y is given by

$$
\begin{equation*}
f_{Y}(y)=\frac{d f_{y}(y)}{d y}=\sum_{i} \frac{d\left(F_{X}\left(\psi_{i}^{(+)}(y)\right)-F_{X}\left(\psi_{i}^{(-)}(y)\right)\right)}{d y} \tag{5}
\end{equation*}
$$

and using the chain rule of differentiation we obtain a general expression for $f_{Y}(y)$

$$
\begin{equation*}
f_{Y}(y)=\sum_{i}\left(\frac{d \psi_{i}^{(+)}(y)}{d y} f_{X}\left(\psi_{i}^{(+)}(y)\right)-\frac{d \psi_{i}^{(-)}(y)}{d y} f_{X}\left(\psi_{i}^{(-)}(y)\right)\right) \tag{6}
\end{equation*}
$$

SPECIAL CASE 1: MONOTONICALLY INCREASING FUNCTION If $\phi(x)$ increases monotonically, the results in eq. 6 and 4 simplify to

$$
\begin{gather*}
F_{Y}(y)=F_{X}(\psi(y))-F_{X}(-\infty)=F_{X}(\psi(y)) \tag{7}\\
f_{Y}(y)=\frac{d \psi(y)}{d y} f_{X}(\psi(y)) \tag{8}
\end{gather*}
$$

SPECIAL CASE 2: MONOTONICALLY DECREASING FUNCTION If $\phi(x)$ decreases monotonically, the results in eq. 6 and 4 simplify to

$$
\begin{gather*}
F_{Y}(y)=F_{X}(+\infty)-F_{X}(\psi(y))=-F_{X}(\psi(y)) \tag{9}\\
f_{Y}(y)=-\frac{d \psi(y)}{d y} f_{X}(\psi(y)) \tag{10}
\end{gather*}
$$

Note that since the function is monotonically decreasing, the derivative is negative and thus

$$
\begin{equation*}
f_{Y}(y)=\left|\frac{d \psi(y)}{d y}\right| f_{X}(\psi(y)) \tag{11}
\end{equation*}
$$

which is actually an expression for any monotonic function.

EXPECTED VALUE OF FUNCTIONS OF RANDOM VARIABLES

The expected value of a function $y=\phi(x)$ of a random variable X is given by

$$
\begin{equation*}
E[Y]=\int_{-\infty}^{+\infty} \phi(x) f_{X}(x) d x \neq \phi(E[X]) \tag{12}
\end{equation*}
$$

This expression is valid for any arbitrary function $\phi(x)$ monotonic or not.

VARIANCE OF FUNCTIONS OF RANDOM VARIABLES

By definition

$$
\begin{equation*}
V A R[Y]=E\left[Y^{2}\right]-E[Y]^{2} \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
E\left[Y^{2}\right]=\int_{-\infty}^{+\infty} \phi^{2}(x) f_{X}(x) d x \tag{14}
\end{equation*}
$$

