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SUMMARY OF LECTURE 6 - FUNCTIONS OF A RANDOM VARIABLE

In many situations one is interested in determining the cumulative distribution function (CDF) and
probability density function (PDF) of a certain function of a random variable with known CDF
and PDF. That is, given FX(x), fX(x) and the function

Y = φ(X) (1)

we are interested in

FY (y) = P [Y ≤ y] (2)

and its derrivative

fY (y) =
d

dy
FY (y) (3)

To begin, consider the figure below depicting an arbitrary function y = φ(x)
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Consequently, the probability density function (PDF) of Y is given by
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and using the chain rule of differentiation we obtain a general expression for fY (y)
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SPECIAL CASE 1: MONOTONICALLY INCREASING FUNCTION If φ(x) increases monotoni-

cally, the results in eq. 6 and 4 simplify to

FY (y) = FX(ψ(y))− FX(−∞) = FX(ψ(y)) (7)

fY (y) =
dψ(y)

dy
fX(ψ(y)) (8)

SPECIAL CASE 2: MONOTONICALLY DECREASING FUNCTION If φ(x) decreases monoton-

ically, the results in eq. 6 and 4 simplify to

FY (y) = FX(+∞)− FX(ψ(y)) = −FX(ψ(y)) (9)

fY (y) = −dψ(y)

dy
fX(ψ(y)) (10)

Note that since the function is monotonically decreasing, the derivative is negative and thus

fY (y) = |dψ(y)

dy
|fX(ψ(y)) (11)

which is actually an expression for any monotonic function.

EXPECTED VALUE OF FUNCTIONS OF RANDOM VARIABLES

The expected value of a function y = φ(x) of a random variable X is given by

E[Y ] =

∫ +∞

−∞
φ(x)fX(x)dx 6= φ(E[X]) (12)

This expression is valid for any arbitrary function φ(x) monotonic or not.

VARIANCE OF FUNCTIONS OF RANDOM VARIABLES
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By definition
V AR[Y ] = E[Y 2]− E[Y ]2 (13)

where

E[Y 2] =

∫ +∞

−∞
φ2(x)fX(x)dx (14)
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