where the incomplete Beta function is given by $\beta_s(q,r) = \int_0^s y^{q-1} (1-y)^{r-1} dy$.

The first two moments and the coefficient of skewness of the Beta distribution are:

$$E(X) = \mu_X = a + \frac{q(b-a)}{q+r}$$
 (A.69)

$$var(X) = \sigma_X^2 = \frac{qr(b-a)^2}{(q+r)^2(q+r+1)}$$
(A.70)

$$\gamma_1 = \frac{2(r-q)}{(q+r)(q+r+2)\sigma_\chi}$$
 (skewness coefficient) (A.71)

The incomplete Beta function ratio $\beta_s(q,r)/\beta(q,r)$ has been tabulated [Pearson and Johnson, 1968]. If q,r are both integral, BT(0,1,q,r) is binomially distributed such that

$$f_s(s) = (q+r-1)p_\chi(x)$$
 (A.72)

where $p_X(x)$ is binomially distributed as B(q+r-2,s) with x=q-1.

A special case of the general Beta distribution is the *rectangular* or *uniform* distribution BT(a,b,1,1) = R(a,b) with probability density function and cumulative distribution function given by:

$$f_X(x) = \frac{1}{b-a} \qquad a < x < b$$

$$= 0 \qquad \text{elsewhere}$$
(A.73)

$$F_X(x) = \frac{x-a}{b-a}$$

$$= 0 x \le a$$

$$= 1 x \ge b$$
(A.74)

with moments

$$\mu_{\chi} = \frac{(a+b)}{2}$$
 $\sigma_{\chi}^2 = \frac{(b-a)^2}{12}$
(A.75)

A.5.11 Extreme value distribution type I EV-I(μ , α)

This is the limiting (asymptotic) distribution of the largest (smallest) of n random variables X_i as $n \to \infty$. The distribution of the X_i must be of the form $F_X(x) = 1 - \exp[-g(x)]$ or $f_X(x) = \exp[-g(x)]$ with dg/dx > 0. The normal, gamma and exponential distributions are of this type. If Y is the *largest* of many independent X_i then its probability density and cumulative distribution functions are, asymptotically, given by the following expressions [Gumbel, 1958]:

The disp

where of a n

> (1) in on an

(2) T

$$f_{\gamma}(y) = \alpha \exp[-\alpha(y-u) - e^{-\alpha(y-u)}] \qquad -\infty < y < \infty$$
 (A.76)

$$F_{\gamma}(y) = \exp[-e^{-\alpha(y-u)}] \qquad -\infty < y < \infty \tag{A.77}$$

Figure A.5 Extreme value distribution type I (Gumbel)

The parameters are the mode u of the distribution and α which is the measure of the dispersion of the distribution. α^{-1} is sometimes known as the 'slope' of the distribution (obtained when plotting the distribution on so-called 'Gumbel' paper). Both u and α may be obtained, via the moments, from curve fitting to observed data. The moments are:

$$E(Y) = \mu_{\gamma} = u + \gamma / \alpha \tag{A.78}$$

$$var(Y) = \sigma_Y^2 = \frac{\pi^2}{6\alpha^2} \tag{A.79}$$

$$\gamma_1 = 1.1396 \qquad \text{(skewness)} \tag{A.80}$$

where $\gamma = 0.577\ 215\ 664\ 9...$ is Euler's constant and the skewness is seen as independent of u and α . The following points might be noted in applications using this distribution:

- (1) In practice, the X_i of the underlying population need not be completely independent or completely identical [Gumbel, 1958]. Also, it may be difficult to determine the appropriate underlying distribution of the X_i , and convergence to the asymptotic distribution may be slow. Nevertheless extreme value distributions are useful for fitting to experimental data even where the underlying mechanisms are not fully understood.
- (2) The distribution usually is tabulated in terms of a reduced variate $W = (Y u)\alpha$ for which u = 0, $\alpha = 1$ and $F_w(w) = \exp[-e^{-w}]$ [National Bureau of Standards, 1953] The

probability density function and the cumulative distribution function in terms of Y are recovered from

$$f_{Y}(y) = \alpha f_{W}[(y - u)\alpha] \tag{A.81}$$

$$F_{\gamma}(y) = F_{w}[(y - u)\alpha] \tag{A.82}$$

(3) This distribution is also termed the 'double exponential', 'Gumbel' or 'Fisher-Tippett Type I' distribution.

The complementary result is as follows. The probability density function and the cumulative distribution function for the smallest value Y^s of many independent X_i are given by, respectively:

$$f_{y^s}(y^s) = \alpha \exp[\alpha(y^s - u) - e^{\alpha(y^s - u)}] \quad -\infty < y^s < \infty$$
 (A.83)

$$F_{y^s}(y^s) = 1 - \exp[-e^{\alpha(y^s - u)}]$$
 $-\infty < y^s < \infty$ (A.84)

with moments

$$\mu_{\gamma^{S}} = u - \gamma / \alpha \tag{A.85}$$

$$\sigma_{y^5}^2 = \frac{\pi^2}{6\alpha^2} \tag{A.86}$$

$$\gamma_1 = -1.1396$$
 (A.87)

The tabulated results for the reduced variable W described above can be applied since the distribution for Y^s is related to that for W by

$$f_{y^{S}}(y^{S}) = \alpha f_{w}[-(y^{S} - u)\alpha]$$
(A.88)

$$F_{y^s}(y^s) = 1 - F_w[-(y^s - u)\alpha]$$
 (A.89)

The extreme value distribution for the minimum value has less practical application than that for the maximum value; the Weibull distribution (extreme value distribution type III) is more comonly used for smallest values. $f_X(x) = A \times x^{-(k+1)}$

A.5.12 Extreme value distribution type II EV-II(u,k)

This is the limiting distribution of the largest of n random variables X_i as $n \to \infty$. The distribution of the X_i must be of the form $F_X(x) = 1 - Ax^{-k}$, $x \ge 0$, A = constant[Gumbel, 1958]. Typical of this form is the Pareto distribution and the Cauchy distribution for $x \ge 0$. The probability density function and the cumulative distribution function are, respectively: 71 niform dist.

The parame median mod of the distrib

so that

Moments of The follow

- (1 If it is ki be evalu
- The type EV-I(u,

$$f_Y(y) = \frac{k}{y} \left(\frac{u}{y}\right)^k e^{-(u/y)^k}$$
 $y \ge 0$ (A.90)

$$F_{y}(y) = e^{-(u/y)^{k}}$$
 $y \ge 0$ (A.91)

Figure A.6 Extreme value distribution type II (Frechet).

The parameters are the characteristic value u of the distribution (median > u > mode; median mode for k > 4) and k which is a dimensionless inverse measure of the dispersion of the distribution. The first two moments are:

$$E(Y) = \mu_Y = u\Gamma(1 - 1/k)$$
 $k > 1$ (A.92)

$$var(Y) = \sigma_Y^2 = u^2 \left[\Gamma(1 - 2/k) - \Gamma^2(1 - 1/k) \right] \qquad k > 2$$
 (A.93)

so that

$$V_Y^2 = \frac{\mu_Y^2}{\sigma_Y^2} = \frac{\Gamma(1 - 2/k)}{\Gamma^2(1 - 2/k)} - 1 \tag{A.94}$$

Moments of order $l \ge k$ do not exist; this complicates the estimation of u and k. The following points should be noted in applications using this distribution.

- (1 If it is known that k > 2, equation (A.94) may be used to evaluate k, and then u may be evaluated from (A.92).
- (2) The type II distribution for Y. EV-II(u,k), may be transformed to the type I for Z, EV-I(u, α), by letting $Z = \ln Y$. Then

$$f_Y(y) = \frac{1}{y} f_Z(\ln y)$$
 (A.95)

$$F_{\gamma}(y) = F_{Z}(\ln y) \tag{A.96}$$

$$\alpha = k \tag{A.97}$$

Hence, in terms of the reduced variable W, which is tabulated (see Section A.5.11),

$$f_Y(y) = \frac{k}{y} f_W[(\ln y - \ln u)k]$$
 (A.98)

$$F_{Y}(y) = F_{W}[(\ln y - \ln u)k]$$
 (A.99)

- (3) The above properties hold for $y \ge 0$. A more general result, for $y \ge \varepsilon$, $\varepsilon \ne 0$, can be obtained by linear transformation by writing $u \varepsilon$ for u and $y \varepsilon$ for y.
- (4) This distribution is sometimes known as the 'Frechet' distribution.
- (5) The distribution for the smallest extreme value is of no practical interest.
- (6) The underlying distributions X_i for the type II distribution typically have longer tails $(x \ge 0)$ than those for the type I distribution.

A.5.13 Extreme value distribution type III EV-III(ε , u, k)

This represents the (asymptotic) distribution of the largest (smallest) value of n random variables X_i as $n \to \infty$, with X_i limited in the tail of interest to some maximum (minimum) value w (or ε), and X_i having a distribution of general form

$$F_X(x) = 1 - A(w - x)^k$$
 $x \le w, k > 0, A = \text{constant}$

The rectangular (k=1), triangular (k=2) and the Gamma distribution $(\varepsilon=0)$ are of this form. The probability density function and the cumulative distribution function for the largest value Y^L of many independent X_i are given, respectively, by [Gumbel, 1958]:

Figure A.7 Extreme value distribution type III (Weibull).

More releva

when

which

13 104

of the

The fo

,1) | |

$$f_{Y^{L}}(y^{L}) = \frac{k}{w - u} \left(\frac{w - y^{L}}{w - u}\right)^{k - 1} F_{Y^{L}}(y^{L}) \qquad y^{L} \le w$$
 (A.100)

$$F_{yL}(y^L) = \exp\left[-\left(\frac{w - y^L}{w - u}\right)^k\right] \qquad y^L \le w \tag{A.101}$$

More useful is the distribution of the *smallest* value Y of many independent X_i . The relevant cumulative distribution and the probability density functions are [Gumbel, 1958]:

$$F_{\gamma}(y) = P(Y \le y) = 1 - P_{\gamma}(y)$$
 $y \ge \varepsilon$ (A.102)

where

$$P_{Y}(y) = \exp \left[-\left(\frac{y - \varepsilon}{u - \varepsilon} \right)^{k} \right] \qquad y \ge \varepsilon$$
 (A.103)

which equals the probability of a value Y larger than y, i.e. P(Y > y). Also,

$$f_{\gamma}(y) = \frac{\mathrm{d}F_{\gamma}(y)}{\mathrm{d}y} = \frac{k}{u - \varepsilon} \left(\frac{y - \varepsilon}{u - \varepsilon} \right)^{k-1} P_{\gamma}(y) \qquad y \ge \varepsilon \tag{A.104}$$

Th parameters are the minimum value ε of X_i (and hence Y), the characteristic value u of the distribution (which converges to μ_Y as $k \to \infty$) and the 'scale parameter' 1/k (usually k > 1). The moments are

$$E(y) = \mu_{\gamma} = \varepsilon + (u - \varepsilon)\Gamma(1 + 1/k)$$
(A.105)

$$var(y) = \sigma_{\gamma}^{2} = (u - \varepsilon)^{2} [\Gamma(1 + 2/k) - \Gamma^{2}(1 + 1/k)]$$
(A.106)

The following points should be noted in application of this distribution:

(1) Estimation of the parameters ε , u and k generally is not straightforward. If the underlying distribution in is known, k is known and ε and u can be estimated from the estimates for μ_{γ} and σ_{γ}^2 . Otherwise, k may be estimated from sample skewness or u may be estimated from order statistics [Gumbel, 1958]. If the lower limit ε is known, or is zero, then u and k can be evaluated from equations (A.105) and (A.106) by writing y for $y - \varepsilon$ and hence

$$\mu_{\gamma} = u\Gamma(1+1/k)$$

$$\sigma_{\gamma}^{2} = u^{2}[\Gamma(1+2/k) - \Gamma^{2}(1+1/k)]$$

$$1 + V_{\gamma}^{2} = \frac{\Gamma(1+2/k)}{\Gamma^{2}(1+1/k)} \quad \text{or} \quad k \approx V_{\gamma}^{-1.09}$$

and

all of which can be estimated from sample data [Gumbel, 1958]. However, the procedure may be cumbersome [see also Mann et al., 1974].

- (2) The distribution $F_{\gamma}(y)$ is pseudo-symmetric for 3.2< k < 3.7.
- (3) If Y is EV-III (ε , u, k) for smallest values, then $Z = \ln(Y \varepsilon)$ is EV-I $[\ln(y \varepsilon), k]$ for smallest values. This enables the third extreme value distribution to be evaluated using the tables for EV-I (largest) in terms of the reduced variate W:

$$F_{Y}(y) = 1 - F_{W}\{-k[\ln(y - \varepsilon) - \ln(u - \varepsilon)]\} \qquad y \ge \varepsilon$$
 (A.107)

$$f_Y(y) = \frac{k}{y - \varepsilon} f_W \left[-k \ln \left(\frac{y - \varepsilon}{u - \varepsilon} \right) \right] \qquad y \ge \varepsilon$$
 (A.108)

- (4) The distribution $P_{\gamma}(y)$ is also known as the Weibull distribution.
- (5) If $\varepsilon = 0$, k = 2 the distribution is also known as the Rayleigh distribution:

$$f_Y(y) = \frac{y}{\sigma_Y^2} \exp\left(-\frac{y^2}{2\sigma_Y^2}\right)$$
 (A.102a)

$$F_{\gamma}(y) = 1 - \exp\left(-\frac{y^2}{2\sigma_{\gamma}^2}\right) \tag{A.103a}$$

A.6 JOINTLY DISTRIBUTED RANDOM VARIABLES

A.6.1 Joint probability distribution

If an event is the result of two (or more) continuous random variables, X_1 and X_2 say, the probabilities that the event occurs for given values x_1 and x_2 are described by the joint cumulative distribution function

$$F_{X_1X_2}(x_1, x_2) = P[(X_1 \le x_1) \cap (X_2 \le x_2)] \ge 0$$

$$= \int_{-\infty}^{x_1} \int_{-\infty}^{x_2} f_{X_1X_2}(u, v) du dv$$
(A.109)

where $f_{x_1x_2}(x_1, x_2) \ge 0$ is the joint probability density function. Evidently, if the partial derivatives exist,

$$f_{X_{1}X_{2}}(x_{1}, x_{2}) = \lim_{\delta x_{1}, \delta x_{2} \to 0} \{P[(x_{1} < X_{1} \le x_{1} + \delta x_{1}) \cap (x_{2} < X_{2} \le x_{2} + \delta x_{2})]\}$$

$$= \frac{\partial^{2} F_{X_{1}X_{2}}(x_{1}, x_{2})}{\partial x_{1} \partial x_{2}}$$
(A.110)

Also,

The last eng For discrete

A.6.2 Con

If the prob written:

According

By analog

A.6.3 M