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where the incomplete Beta function is given by Bo(q,r) = fo d Y (1= ) dy.

The first two moments and the coefficient of skewness of the Beta distribution are:

E(X)=p, g+ 3l-a)

p (A.69)
2
X)=g?—_ grib-a) )
var(X) Ox (q+r)2(q+r+l) (A.70
= 2(r—q) (skewness coefficient) (ATD)
(q+r)(q+r+2) Oy

The incomplete Beta function ratio Bs(q,

r)/ B(q,r) has been tabulated [Pearson and
Johnson, 1968]..1f q,

r are both integral, BT(0, 1,g,r) is binomially distributed such that
fs()=(q+r- Dpy(x) (A72)

where p,(x) is binomially distributed as B(g+r~2,s) with x=¢g-1.

A special case of the general Beta distribution is the rectangular or uniform distr_ibut.ion
BT(a,b,1,1) = R(a,b) with probability density function and cumulative distribution
function given by:

1
fr(@)=o— a<x<b (A73)
=0 elsewhere
Fx(x)zz’a a<x<b
-a
=0 <a (A.74)
=1 x2b
with moments
_(a+b) 2 _(b—a) (A.75)
T Tx 12

A.5.11 Extreme value distribution typel EV-I(u, )

This is the limiting (asymptotic) distribution of the largest (smallest) of n random variables
X; as n— oo, The distribution of the X, must be of the form Fy(x)=1-exp[-g(x)] or

fx(x)=exp[-g(x)] with dg/dx>0. The normal, gamma and exponential distributions
are of this type. If Y is the largest of many independent X; then its probability density and

cumulative distribution functions are, asymptotically, given by the following expressions
[Gumbel, 1958}: :
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Fr(3) = aexpl~a(y - u) - 0] -0 <y <oo (A.76)

Fy(y) = exp[—e 0] ~o0 < y<oo (ATT)

w=(y-u)lo,

Figure A.5 Extreme value distribution type I (Gumbel)

The parameters are the mode u of the distribution and & which is the measure of the
dispersion of the distribution. ! is sometimes known as the ‘slope’ of the distribution
(obtained when plotting the distribution on so-called ‘Gumbel’ paper). Both u and may
be obtained, via the moments, from curve fitting to observed data. The moments are:

EX)=p,=u+y/a (A.78)
7[2 | .

var(t) = o} = (A79)

7, =1.1396 (skewness) (A-SO)

where ¥ =0.577 215 664 9... is Euler's constant and the skewness is seen as independent
of u and o . The following points might be noted in applications using this distribution:

(1) In practice, the X, of the underlying population need not be completely independent
or completely identical [Gumbel, 1958]. Also, it may be difficult to determine the
appropriate underlying distribution of the X; , and convergence to the asymptotic
distribution may be slow. Nevertheless extreme value distributions are useful for
fitting to experimental data even where the underlying mechanisms are not fully
understood.

(2) The distribution usually is tabulated in terms of a reduced variate W =(Y —-u)a for

which u=0,a =1 and Fy,(w) = exp[~e™] [National Bureau of Standards, 1953] The
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probability density function and the cumulative distribution function in terms of Y are
recovered from

fr=a fyl(y-wal (A.81)
Fy(y) = Fyl(y-wa] (A.82)

(3) This distribution is also termed the ‘double exponential’, ‘Gumbel’ or ‘Fisher-Tippett
Type I’ distribution.

The complementary result is as follows. The probability density function and the
cumulative distribution function for the smallest value Y° of many independent X, are
given by, respectively:

[ (%) = aexpla(y’ - u)— ™’ ] —w<yS <oo (A.83)
Fos(5°)=1-exp[-e®"™] —ewo < yS < oo (A.84)
with moments
Hys=u-vyla (A.85)
, _ T
O == : (A.86)
¥, =-1.1396 (A.87)

The tabulated results for the reduced variable W described above can be applied since the
distribution for ¥* is related to that for W by

FuON = fil-0* ~wal (A88)
Fs(3)=1-Fyl-(' -wal (A.89)

The extreme value distribution for the minimum value has less practical application than
that for the maximum value; the Weibull distribution (extreme value distribution type III)
is more comonly used for smallest values.

et
cer e JCX )= Akx )
A.5.12 Extreme value distribution type Il EV-Ii(u,k)

This is the limiting distribution of the largest of n random variables X; as n—» 0. The

distribution of the X, must be of the form Fy(x)=1-Ax" x>0, A = constant
[Gumbel, 1958]. Typical of this form is the Pareto distribution and the Cauchy distribution
for x 2 0. The probability density function and the cumulative distribution function are,
respectively: : Ui forw, Aret.
K==l
=- Vb

The parame
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k

klu) _op y
fy(y)=; 5] “» y20 (A.90)
Fy(y)=e y20 (A1)
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Figure A.6 Extreme value distribution type II (Frechet).

The parameters are the characteristic value u of the distribution (median > u > mode;
median mode for k >4)and k which is a dimensionless inverse measure of the dispersion
of the distribution. The first two moments are:

E(Y)=p, =ul'(1-1/k) k>1 (A.92)

var(Y) = oy =i [T(1-2/k)-T*(1-1/k)]  k>2 (A.93)

il

2 -
yraby L2270 (A.94)
o2 TA(A-2/k)

so that
Moments of order ! > & do not exist; this complicates the estimation of « and k.
The following points should be noted in applications using this distribution.

(1 Iitisknown that k& > 2, equation (A.94) may be used to evaluate k, and then # may
be evaluated from (A.92).

(2) The type II distribution for Y. EV-II(u,k), may be transformed to the iype Ifor Z,
EV-I(u,¢ ), by letting Z=1InY. Then

S Fr)= %fz(ln ) (A.95)
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Fy(y)=F,(Iny) (A.96)
a=k (A.97)

Hence, in terms of the reduced variable W, which is tabulated (see Section A.5.11),
k .
£r0)= fulliny = Inwk) “(A98)

Fy(y)= Fy[(Iny - Inu)k] (A.99)

(3) The above properties hold for y >0. A more general result, for y> ¢, € #0, can be
obtained by linear transformation by writing u— € for u and y—¢ for y.
(4) This distribution is sometimes known as the ‘Frechet’ distribution.

(5) The distribution for the smallest extreme value is of no practical interest.
(6) The underlying distributions X, for the type II distribution typically have longer tails

(x 2 0) than those for the type I distribution.

A.5.13 Extreme value distribution type Il EV-IIl(guk) _

This represents the (asymptotic) distribution of the largest (smallest) value of n random
variables X, as n-» oo, with X, limited in the tail of interest to some maximum
(minimum) value w (or €), and X, having a distribution of general form

Fy(x)=1-A(w-x)* x <w,k>0,A = constant

The rectangular (k =1), triangular (k¥ =2) and the Gamma distribution (£ =0) are of this
form. The probability density function and the cumulative distribution function for the
largest value Y" of many independent X; are given, respectively, by [Gumbel, 1958}:

i~ .

A (u-E)fY(y) / E"ﬁp«-

JK
Figure A.7 Extreme value distribution type I (Weibull).




Appendix A: Summary of Probability Theory 359

L k [w=y* ! L L
fuly )=m( w——u) F,.0") y'sw (A.100)
FYL(}'L)=CXP[—(W Y ” Yy <w (A.101)
Wi

More useful is the distribution of the smallest value Y of many independent X,. The
relevant cumulative distribution and the probability density functions are [Gumbel, 1958]:

Fy(y)=P(Y <y)=1-P,(y) y2¢ (A.102)
where . Py(y)= eXp{—(———y 8) j{ y2e (A.103)
ye

which equals the probability of a value Y larger than y, ie. P(Y > ¥). Also,

k-1
frn=2E __k (y 8) Py(y) y2e (A.104)
dy U—E\u-¢€

Th parameters are the minimum value € of X, (and hence Y), the characteristic value u
of the distribution (which converges to p, as k — o) and the ‘scale parameter’ 1/k
{usually k> 1). The moments are

E(y)=u, =e+u-e)[(1+1/k) (A.105)
var(y) = 0y = (u - €)*[T(1+2/ k)-T*(1+1/ k)] (A.106)

The follov;ing points should be noted in application of this distribution:
(1) Estimation of the parameters €, u and k generally is not straightforward. If the
underlying distribution in is known, k is known and £ and ¥ can be estimated from

the estimates for u, and o;. Otherwise, k may be estimated from sample skewness

or u may be estimated from order statistics [Gumbel, 1958]. If the lower limit € is

known, or is zero, then u and k can be evaluated from equations (A.105) and (A.106)
by writing y for y— € and hence

py =ul'(1+1/k)

ol =P [TA+2/k)-T*(1+1/k)]

2, _T(t+2/k)
T2 (1+1/k)

and 1+ V2 k=V;'®
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all of which can be estimated from sample data [Gumbel, 1958]. However, the
procedure may be cumbersome [see also Mann et al., 1974].

(2) The distribution F,(y) is pseudo-symmetric for 3.2< k<3.7.

(3) If Y is EV-IIl (&,u,k) for smallest values, then Z=1n(Y - ¢) is EV-I [In{y-¢€),k]

for smallest values. This enables the third extreme value distribution to be evaluated
using the tables for EV-I (largest) in terms of the reduced variate W :

Fy(y) =1- Fp{~k[In(y - £) ~ In(u— &)]} y>e (A.107)

1260 =-y—1_‘-; fw[-k ln( Y= 8)} y2e (A.108)

u—¢€
(4) The distribution P, (y) is also known as the Weibull distribution.
(5) If £€=0, k=2 the distribution is also known as the Rayleigh distribution:

2

y y
=2 expl - A.1022
Fr(¥) 7 Xp 202 ( )
y2
F,(y)=1- - A.103a
r() exp 5o ( )

Y

A.6 JOINTLY DISTRIBUTED RANDOM VARIABLES
A.6.1 Joint probability distribution

If an event is the result of two (or more) continuous random variables, X, and X, say, the
probabilities that the event occurs for given values x; and x, are described by the joint
cumulative distribution function

Fyy, (x,2,) = P[(X, S x)N (X, < x,)]20

= f:., f: S, (u,v) dudv (A.109)

where fy, (x,,x,)20 is the joint probability density function. Evidently, if the partial
derivatives exist,
Frx, (x1,%) = &lgm O{P[()c1 <X Sx+8x)N(x, <X, S$x, +5x,)])
1,0%)—

- T Fux (31, 7) (A110)
Ox,x,




